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A quantum-mechanical method is used to obtain information about the nature of bonds
in chemisorption on supported metals. The calculations are based on an unidimensional
model composed of a finite chain of metal atoms and a semi-infinite chain of support. The
linear combination of atomie orbitals and the tight-binding approximation are used to
construct the wave function of one electron in the field of the chain of metal atoms, sup-
port and chemisorbed atom.

The support affects the chemisorption process, modifying the nonlocalized volume
states (states with periodic wave function) and the localized states (states with non-
periodic wave function); also generating new types of states in which the wave function
is periodic in one layer and nonperiodic in the other (composite states). For instance, a
single component finite chain of metal atoms (without support) has a single band for
the volume states; with an AB-type support, the complete system can have two bands,
one band or no band. The localized states can be localized at the adatom-metal surface,
and/or at the metal-support interface. Also, depending upon the number of metal atoms
in the chain and the nature of the support, the bond due to a localized state can change
from anionic to cationic. For a composite state having wave function coefficients larger
in the layer which has a periodic wave function, the electron will belong to that whole

layer.

1. InTRODUCTION

The distinetion between physical adsorp-
tion and chemisorption is based upon the
forees involved. In physical adsorption, the
forees are similar to those responsible for the
liquefaction of inert gases, while chemisorp-
tion implies a ‘“‘chemical bond.” Two points
of view have been formulated concerning the
nature of the chemisorption bond. In the
first, one considers a bond with the metal as
a whole, in the second, one considers a bond
generating a chemical compound with only
some metal atoms of the interface. Compar-
ing the heats of chemisorption of different
gases on different solids and the heats of
formation of bulk solids, Sachtler (1) noticed
that they show the same trend: the heats of
chemisorption are greater for greater heats
of formation. From this observation, the
useful conclusion was reached that a “chemi-
cal compound” is formed between the
chemisorbed gas and the metal atoms of

the surface. It is, however, important to
note that the surface compound does not
necessarily have the same properties as a
bulk solid of similar chemical composition:
the heats of chemisorption appear to be
always greater. Consequently, it appears
that a chemical compound is formed on the
surface, but this compound interacts in an
important manner with the bulk of the
metal. It is natural to conclude that the
chemisorption bond cannot be restricted to
one of the two limiting situations suggested
by the ‘“‘chemical” or “physical” intuition,
but is a combination of both.

The first theoretical approach to the
problem has considered that the bonds on a
metal surface are not too different from
those acting within the bulk of the metal.
However, in the quantum-mechanical treat-
ment of a solid having a free surface, special
states occur (Tamm surface states) and,
consequently, one may expect a similar,
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more complicated, behavior when a chemi-
sorbed layer is formed at the interface. Such
an approach to the problem was developed
by Koutecky (2), Grimley (3), Davison and
Cheng (4), and others (6-9). Most of the
work is based on a unidimensional semi-
infinite chain of metal atoms having a
chemisorbed atom (adatom) at one end.
The LCAO (linear combination of atomic
orbitals) approximation is used to construct
the wave function of one electron in the
field of the chain of metal atoms plus adatom.
The energy levels, as well as the coefficients
of the atomic wave function, are determined
using a variational method and the tight-
binding approximation which takes into
account resonance integrals, but neglects
overlap integrals. If the wave function de-
cays inside the crystal, the electron is
localized at the adatom-metal surface
(localized states). If the wave function has
a periodic shape, the electron belongs to the
whole system (nonlocalized volume states).
Depending upon the values of the inter-
action parameters between the metal atoms
and between the adatom and metal, the
localized states can lead to homopolar or
ionie bonds. The nonlocalized volume states
lead to metallic bonds.

For supported metal catalysts, the prob-
lem is more complex. The experimental
evidence appears to show that there are
two classes of reactions: in the first, the
specific activity of the catalyst (defined as
the rate per unit exposed area of metal) is
independent of the crystallite sizes; in the
second, it depends on the crystallite sizes.
Several types of size dependencies have been
reported in the literature (10-18).

Concerning the supported metal catalysts,
two questions can be raised, namely: (a)
what is the effect of the size of the crystallite
upon the chemisorption bond? and (b) what
is the effect of the interaction between the
support and metal upon the chemisorption
bond? Some answers to these questions were
obtained in this study on the basis of a
quantum-mechanical approach similar to
that used previously for the chemisorption
on a semi-infinite metal. The main conclu-
sions are: (a) The presence of the support
affects the range of parameters in which
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various types of localized states exist, and
also the nature of the corresponding bonds.
For instance, depending upon the thickness
of the crystallites, a bond due to a localized
state can change from homopolar to ionic, or
from anionic to cationic. The localized states
can be localized at the adatom-metal sur-
face, and/or at the metal-support interface.
(b) The presence of the support has a strong
effect on the number of bands for the volume
states. For instance, a single component
finite chain of metal atoms (without support)
has a single band; with an AB-type support,
the complete system can have two bands,
one band or no band. (¢) Composite states
with a periodic wave function in one of the
layers and nonperiodic wave function in the
other can occur.

MzeTrHODS AND RESULTS

1. Chemisorption Model and Basic Equations

For simplicity, a one-dimensional model
is considered (Iig. 1). It consists of a linear
chain composed of a finite number of atoms
of a pure metal or of an alloy supported on a
semi-infinite substrate (an oxide for in-
stance). For purposes of illustration, the
alloy is considered as a combination of the
type A/B/ (¢ and j can be any positive
integer; here we take ¢ =1 and j = 1 for
convenience in the calculation) and the
oxide as a compound of the form AB; an
adatom is in interaction with one end of the
chain, say A’ metal atom. The atoms in the
chain are numbered 0, 1, . . . , N, and the
adatom is denoted by A. Associated with
each atom 7 is an atomic orbital &,. The
wave function ¥ of a single electron in the
system is expressed as a linear combination
of the atomic orbitals ®,, in the form

v = Ecn%. (1)

n

The coefficients ¢, are determined by using
a variational method. The wave function
¥ satisfies the one-electron Schroedinger

equation,
HY = EY, 2)

where H is the effective one-electron Hamil-
tonian operator for the whole system, chain
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Fia. 1. Model for an adatom interaction with a finite A’B’-type metal supported on a semi-infinite

AB-type oxide.

plus adatom (the interaction between elec-
trons is neglected), and F is the correspond-
ing electron energy. Substituting Eq. (1)
into Eq. (2), multiplying through on the
left by ®," and integrating over all space,
one obtains the system of equations

Y (Hon = ESpa)en = 0, 3)
where
H,n = [®n"H®,dr, 4)
and
Son = [®" P, dr. (5)

Assuming {®,} form an orthonormal set, so
that Smw = 8ma, then Eq. (3) becomes

E Hont. 6)

m#En

[E i Hrm]cn =

If the atomic orbitals &, are sufficiently
localized on the atom n, the Hamiltonian
matrix elements H,., are negligibly small
for m too different from n. According to the
tight-binding approximation, H., is differ-
ent from zero only form = nand m = n &
1. Because H,, is symmetrical in m and
n, 1t follows that H,,,,, has the same value
whether n is odd or even. The values of
H,i1,, are denoted by B, and 8. for the
atoms of metal and of substrate, respec-
tively. Because we consider an alloy of type
A’B’, where the atoms A’ are in the even
positions and the atoms B’ in the odd posi-
tions, we have two values for H,,:

H,, = ax, seven (A’ atom),
0<s<r
H,, = apr sodd (B’ atom). (7)

where r 4 1 is the number of metal alloy
atoms. Similarly, for the substrate we
denote

m even (A atom),
r+1<m<N
m odd (B atom).  (8)

Hmm = aa,

Hmm = ag,

The quantities 8; and a; are the resonance
integrals and the Coulomb integrals, re-
spectively. Physically, the o’s represent the
effective energy of an electron in an atomic
orbital, and the 8’s the bond energy between
the nearest-neighbor atoms. The tight-bind-
ing approximation reduces the complexity
of Eqgs. (6), which now become a set of second
order difference equations with constant
coefficients of the form:

‘(E — as)es = Bilem1 + ¢op1), s even,
0<s<r
)(E - als')Cs = B1cs—1 + csr1), s odd,
9)
and
(E — aA)Cm = Bz(Cm—l + c,,,+1),

m even,
r+1<m<N

(E - aB)Cm = ﬁ2(cm—1 + Cm-,Ll),
m odd. (10)

The perturbations introduced by the
presence of the adatom at the end of the
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chain and by the interaction between the
last metal atom in the chain and the first
atom of the support are described by some
new Coulombic and resonance integrals. The
adatom is characterized by a Coulomb in-
tegral Hyy = o, which is different from that
of the atoms of the chain. The effect of the
adatom on the first atom of metal of the
chain is accounted for by the Coulomb in-
tegral aa” (replacing aa- for the bulk) and
by the resonance integral 8:," between the
adatom and the nearest atom of metal. The
resonance integral between the last metal
atom and the first atom of the support is
denoted by 812, which is different from both
B:1 and B,. Since the support is semi-infinite,
i.e.,, N is large, the boundary condition for
n = N cannot affect the conditions near
n = r and n = 0; hence one may assume
ex = 0. Therefore, Egs. (9) and (10) for the
unidimensional chain model are to be solved
for the boundary conditions:

(E — a")en = Bi"co, (11)
(E — as™eo = Bien + Bacy, (12)
(E — ap)c, = Bicr—1 + Bracry1, (13)
(B — aa)erpr = Proty + BaoCrya,  (14)
ey = 0. (15)

2. Solutions of the Equations and the Eigen-
value Equation

In order to solve the difference Egs. (9)
and (10), solutions of the form
(16a)
(16b)

m even,
m odd,

Cm = T™;
Cm = Y™;
are sought. The general solutions of Egs.

(10) for the substrate (App. A), satisfying
the boundary condition (15), are

Cm = Ao sin(N — m)fz; m even,

emn = KsAssin(N — m)8y; modd, (17)
where A, is a constant, and
K, = 262 COos 02/(E - OLB). (18)

The forms of Eq. (17) arise as a result of

introducing the parameter 8, via
X2 — z2 = 4 cos? 8., (19)

where
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Xs = (B — a2)/Bs,
Ry = (C!A - aB)/2x82,
Qg = (aA + OtB)/z. (20)

The quantitics X, and 2z, represent the
dimensionless energy and composition pa-
rameter of the substrate, respectively.

Similarly (App. A), the solutions of Egs.
(9) for the metal are

¢ = Aicos s, + Bysin by
¢; = K1(A1 cos s61 + Bisin s81);

s even,
s odd,
(21)

where A; and B are constants,

Kl = 261 cO0S 01/(E — aB’)
2 cos 01/(X1 + 21)

= [(E — aa)/(E — ap)]'?,  (22)
X2 — 22 = 4 cos? by, (23)
and
Xy = (B — &1)/By,
21 = (aar — apr)/2B1,
oy = (aA: + aB')/Q. (24)

The quantities X; and z; are the dimension-
less energy and composition parameter of
the metal alloy, respectively.

Inserting Eq. (21) into Eq. (11) for ¢, one
obtains the adatom wave function coefficient

o =m'A/ (X1 — 2+ 27)

= m'A/(E" + 2K1cos 61) (25)

where
m' = B1"/B1, 2" = (aar — a')/B1

The quantities z” and »’ are dimensionless
parameters arising because of the adatom
at the end of the chain.

The parameters 6; and 6,, introduced in
Egs. (19) and (23), are not independent
quantities. Eliminating E between Eqs. (19)
and (23), we can express 6, in terms of 8; by
means of

2cos b = {[o =+ n(2:2 + 4 cos? 6;) V2]
—_ 222}”2,

(26)

(27)
where
o= (&1 — &)/B2, n = B/Ba (28)

Introducing the solutions (17) and (21)
into the boundary conditions (12), (13) and
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(14), we obtain the system of homogeneous
equations

(2 + Kicos 0:)(z” + 2K, cos 01) — n"1)4:
- [K1 Sil’l 01(2” + 2K1 CcOs 91)]B1 = 0, (29)
[Kycos ré]Ay + [K sin r61]B;

_ [I—{ism N — r)()g] A, =0, (30)
N21

[ecos(r 4+ 1)81]41 + [sin(r 4+ 1)61]B:

— [1’)12 sin(N —_—r — 1)02]1‘12 = 0, (31)
where
2= (an — aa™)/By,
Nz = 312/31,
N1 = 512/52- (32>

The quantity 2’ is a dimensionless parameter
characterizing the first metal atom. The
quantities 71, and 9. are dimcensionless pa-
rameters characterizing the interaction be-
tween the first atom of the substrate and
the nearest metal atom.

The system of homogeneous Egs. (29),
(30) and (31) has nontrivial solutions, if the
determinant composed of the quantities
which multiply 41, B; and 4, vanishes,
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Equation (34) is the eigenvalue equation
for the allowed energy levels. It involves a
number of dimensionless parameters which
take into account the chain of metal atoms
and the perturbation effects of the two inter-
faces (those of the adatom and of the sup-
port) on the state of the electron. Depending
upon the values of these parameters, either
or both of 8,(I = 1,2), determined by Egs.
(34) and (27), can be real or complex. Real
values of both #s represent nonlocalized
volume states, since they lead to periodical
wave functions which spread throughout the
entire system composed of metal and sup-
port; complex values of both ¢'s represent
localized states, because they lead to wave
functions composed of exponentials in each
of the layers. The localization point has the
highest probability density. Real values for
one of the #'s and complex values for the
other lead to states for which the wave
function is periodic in one of the layers and
cxponential in the other. The name com-
posite states is given to them.

For each of the eigenvalues of Eq. (34)

(Z, + Kl C0Ss 01) —I<1 sin 61(2” —;—5(1 COS 01) 0
X (Z” + 2K1 COs 01) et ‘171/2
K1 cos 6, K, sin 76, _ K sin(N — r)8 =0
n21

cos(r + 1)6; sin(r + 1)6;

The determinant (33) can be rewritten in
the form

By _ cos(r + 1)61f(8:) — H. cos 16,
Ay H,sinr6, — f(8y) sin(r + 1)6,
A, Ko sin 64

—nesin(N —r — 1)6, |
(33)

the system of homogeneous Eqgs. (29), (30),
and (31) leads to

(36)

A, " Ky sin(N — r — 1)8:J(62) sin(r + 198 — H, sin 164]

[Z’ + K1 Ccos 61

. cos(r + 1)01f(6:) — H, cos roy in g
Y, sin 16, — f(02) sin(r 4 1)g; ot

X (@ + 2K1cos6y) = n1",  (34)
where
f(82) = sin(N — r)8a/sin(N — r — 1),
= cos 8y + cot(N — r — 1)6,sin8,, (35)

and
H. = Kmami/Ko.

(37)

3. Volume States

The real values of 8, are restricted to the
range 0 < 6; < 7, for which we have 0 <
cos?0; £ 1. It follows from Egs. (19) and
(23) that the allowed energies lic in two
bands, the edges of which have upper or
lower bounds given by the expressions:

Xi= &2+ )2 for cos? 6, = 1(I = 1,2),

(38)
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X = =z for cos? 8; = 0(l = 1,2).

(39)
In terms of the energy E, Egs. (38) and
(39) can be written as
Eion = @ £ Bi(z® + 4)'72,
Eyry = &, £ Bz,

(40)
(41)

where the subscripts O() refers to the outer
(inner) bounds of the energy levels. The
sign +(—) indicates the highest (lowest)
bound.

Each of the mathematical conditions
0<6 <7 and 0 <8, <7 leads to two
bands (Fig. 2a). Because the energy levels
E are a consequence of the interactions of
the electron with the complete system (metal
plus support), the allowed values of the
energy for the volume states will be those
which satisfy both mathematical conditions
simultaneously.

Depending upon the values of the energy
bounds ¥,0,; and E.; ;, several possibilities
exist. Some are represented in Fig. 2a—e. In
each of these figures, the bands I are ob-
tained from the conditions cos26;, = 1 and
cos? §; = 0 and the bands II from the condi-
tions cos? f; = 1 and cos?§, = 0; the bands
IIT contain the regions which supperpose
from the previous bands. The edges of the
bands III represent bounds (upper or lower)
for the volume states.

As mentioned before, the wave functions
for nonlocalized states are periodic. How-
ever, the amplitudes and periods of the
wave function coefficients are not the same
in the metal and support.

In principle, one may observe that, within
the framework of the LCAO approximation,
situations may arise for which no volume
states exist (Fig. 2e). The absence of volume
states implies the presence of composite
states (but the existence of composite states
does not exclude the possibilities of volume
states). For instance, the wave functions
can be periodic in the metal layer and decay
in the support. In this case the electron
belongs to the whole metal layer.

4. Localized States
Complex roots of the form

0 = ui + ik (42)
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generate the nonperiodic wave functions:

cs = Ay(cos suy cosh s§; — 7 sin su; sinh s£)
~+ Bi(sin su1 cosh s&;
+ 7 cos su; sinh s£1); s even,

¢ = K1[A1(cos su1 cosh s&;
— 7 sin suy sinh s§&1)
—+ B (sin su; cosh s&

~+ 7 cos s sinh s£1)]; s odd, (43a)

in metal, and

emn = Asfsin(N — m)us cosh(N — m)é&.
+ 2 cos(N — m)uz sinh(N — m)é&,];
m even
tn = KyAo[sin(N — m)pscosh(N — m)&,
+ 7 cos(N — m)pe sinh(N — m)é&);
m odd, (43b)

in support.

Substituting Eq. (42) into Eqgs. (19) and
(23), the condition that the dimensionless
energy should be a real quantity leads to

k=012 .... (44)

pr = gkr;

From this expression, two types of solutions
can be generated, depending on whether k
is even or odd. However, only k£ = 0, 2, and
k =1, 3 need be considered, because all
other values repeat these solutions. Hence,
from Eq. (42) we have

0 = 1§, T+ & k even,
0, = 7r/2 + ’sz, 31!'/2 + ’[El; k odd.

As shown in Secs. 5 and 6, when k is even,
the energies caleulated from Eqgs. (19) and
(23) lie outside the main energy bands of
the volume states; such states are called
outer states; when k is odd, the energies
calculated from Egs. (19) and (23) are
located inside the forbidden energy gap;
such states are called inner states.

Information about the properties of the
states described by the wave functions
(43a) and (43b) are obtained from the prob-
ability density. The probability density is
equal to |¢,|2. For 8; given by Eqgs. (452) and
(45b) the probability density decreases ex-
ponentially within the support. Using Eq.
(21), the wave function coefficients for tke
metal can be rewritten as

(45a)
(45b)
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1

¢ = 3(1 + Ky)[(A1 — iBy)e™® ¢ = (£1)arest 4 bye—st (47)
+ (A1 + iBye#t].  (46) where

Considering the values for 6, from (45a), @ = 3(1 + K1)(4: + iBy),

one obtains b1 = %(1 + KI)(Al - ’LBl> (48)
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The plus (minus) sign in Eq. (47) corre-
sponds to the first (second) Eq. (45a). The
probability density is given by

[08!2 = ]a1|2e2851 + [b1|2e_285‘ + 2Re]a1b1"],
(49)

where b;” is the complex conjugate of b;.

If |@1]2 < |by|?%e~*%, then d|c|?/ds is nega-
tive, and the electron is “localized” at the
adatom—metal surface. If |a:|?> > |b|?% then
d|c,|?/ds is positive, and the electron is
localized at the metal-support interface. If
b2 4% < [a]? < |bi]?,  d|cs|?/ds changes
sign inside the metal layer, and the prob-
ability density is high both at the adatom-—
metal surface and metal-support inter-
face. Considering the values for 6; from
Eq. (45b), similar results are obtained if
one replaces a; and b; by

a; = 3(1 4+ Ki){(—B; — 741) and
by = 3(1 + K1)(B: — i41). (50)

Values of & are obtained introducing Egs.
(45a) or (45b) into the eigenvalue Eq. (34)
(see Sects. 5 and 6).

The complex roots (42) lead to states
which are localized either at the surface
of metal and adatom or at the metal-support
interface. Under some conditions (specified
above) the probability density is high both
at the surface of metal and adatom and at
the metal-support interface. Of course, the
probability density in the latter case may
be higher (or even much higher) at one of
these points.

5. Outer Localized States

The existence conditions of the outer
localized states are found by substituting
8, from Eq. (45a) into the eigenvalue Eq.
(34) [Eq. (27) is used to eliminate 8, from
Eq. (34)]. For large values of N, f(6:) can be
approximated by g, where (see App. B)

g = 3{[o £ 9(2:® + 4 cosh® £)VJP — 2,?}1/°
+ (E{lo = n(z1® + 4 cosh? £1)'°F — 20%)

_ 1)1/2_ (51)
One obtains
[¢' &= K41 cosh &
g cosh(r + 1) — H, cosh r§; . h
T Kich sioh 76, — gsib (r &+ D& &l
X [2” &= 2K 41 cosh &] = m,  (52)

where
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K1 = [(21* 4+ 4 cosh? £1)¥2 F 2,]/2 cosh &,.
(63)

When solutions of Eq. (52) exist, they lead
to energies above the top edge of the upper
band and below the bottom edge of the
lower band. Indeed, the upper signs in
Egs. (51), (52) and (53) correspond to
solution of Eq. (34) with 6, = 7§, and,
hence, energy

E = & + Bi(z:2 + 4 cosh? £) 12,

If B8; is positive, such states are situated
above the top edge of the upper band (anti-
bonding) (see Fig. 2). The lower sign corre-
sponds to solution of Eq. (34) with 8, =
m + ¢£; and, hence, energy

E = a; — Bi(z,2 + 4 cosh? &)V,

If B8, is positive, these states are situated
below the bottom edge of the lower band
(bonding state). The state will be called @
state when X; > 0 and 3 state when X; <
0. In Fig. 2a, the depth of the outer level
below (above) the bottom (top) of the lower
(upper) band is

E, = |81(212 + 4 cosh? £&)V2]
— [81es® + 4.

For large band gap width Eq. (54) can
be approximated by

(54)

3 2
BTG

1

For the situation depicted in the Fig. 2a,
the energy levels of the outer localized
states coincide for £, = 0 with the top of
the upper band or the bottom of the lower
band of the volume states. Taking & =
in Eq. (52), one obtains

r— DH, — rPy
H, — (r + )Py

X [¢" & 2K = m”,

[Z, + 2K.1 F K ,

(56)
where
Ky = [(a2® + 9V F 21]/2,
Py = 5y + [3ys) — 113
ye = o £ n(z® + 4)"77 — 2% (57)
Because of the plus and minus signs,

Eq. (56) represents two different equations.
Because one localized state changes to a
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nonlocalized state for & = 0, each of these
equations is the boundary between regions
containing two and one, or one and zero
localized outer states. A representation in
the 2’2”-plane of Eq. (56) is given in Fig.
3a—c¢ for 51" = 1 and for various values of
the parameters. The various regions are
labeled according to the sign of X and the
number and nature of the localized outer
states occurring, Thus, six regions of local-
ized states exist. For instance, in a 92 region
two outer M states occur, while In a EN
region there are one outer @ state and one
outer I state, and so on. The shaded area in
Fig. 3 represents values of 27 and 2” for
which no outer localized states oceur. Conse-
quently, depending on the interaction pa-
rameters 2/, 2”7 and 7" between the adatom
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and the supported metal catalyst, the
system may have two, one or no localized
outer states. In the region in which

n < 20z 4 2)

_ N2 T
K [rHL. - (r+ DP,

[ DH =P
—_ ]\_1 ':7‘]‘[( _ (_)‘ + ])1) }7 (.‘)6)

(r — DH, — rP+J

no outer localized state exists. The area of
the elosed region, 1s given by

N N G 0 ey
v o= 2242 N — K~
0= ek ) = K [rHL.— o+ 1)1»J
K [(I‘ - DH, — rP_

. — (r + np;_}' (59)

S |
® i |
ot

EEEEANEENR: :
e e ——

|

Z ‘jt I B
i

Fia. 3. Regions of outer localized states in the
2'z"-plane corresponding to Fig. 2a (¢, = 0), H, =
1.5, 0 = 0.1, 5 = 1.1 and »," = L @r=12=
15, b)) r = 3, &1 = 1.5,(e)r =1,z = 2.0. No
ou‘er localized states occur in the shaded area.
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In Fig. 4 v is plotted vs r for z; = 1.5 and
various values of the parameters H, and
7. As expected, if the number of the metal
atoms increases, the influence of the support
on the whole system decreases. In the range
of values used in Fig. 4 for the various
parameters, the effect of the support can
be neglected if the number of metal atoms
r -+ 1 is between 5 and 10.

6. Inner Localized States

The occurrence of the inner localized
states is examined by substituting Eq. (45b)
into the eigenvalue Eq. (34). Eliminating
8, by means of Eq. (27) and approximating
(because N is large) the function f(6;) by
¢: [Eq. (61)] (see App. B), one obtains
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The energies of the inner states are given by
the equations

E = ay + B1(z12 — 4 sinh? )12
and
E = & — B1(z:? — 4sinh? &)1

If 8, > 0, the first is an inner @ state and the
second an inner 9N state. Referring to Fig.
2a, the height of the inner level akove the
top of the lower band edge is

Et = [61212 —_ ,31(21 -_ 4 Sinh2 51)1/21. (63)

For large band gap width, Eq. (€3) can be
approximated by

E, ~ 261 (Sil'lh2 E])/Zl. (64)

[Z’ + 1K D sinh & F K

where

g1 = R}V + [3(R) — 17,
h = [0 4 92«2 — 4 sinh? £)V22 — 2,2 (61)
and

K@ = 4208 sinh &/(E — aw). (62)

o] it I A1 ! L

Fic. 4. Area of the region from Fig. 3 in which
no outer lozalized states occur vs number of metal

atoms.

@ 91 cos(r + 1)(375* + 1) — H., cos r(¥732 + 1£1) cosh
Hosinr(352 + it1) — gusin(r + D)2 + &)

X [2" + %K@ sinh &) = 7",  (60)

In order to identify various regions of
inner states, one must take into account
that, for the situation represented in Fig. 2a,
a localized state is transformed into a volume
state when £, = 0. The boundaries separat-
ing the regions can thus be obtained taking
£ = 0in Eq. (60):

(¢ &£ ale” = m (65)
where
o= g (7«%1)1@# rodd, (66)
with
Py = 5y + [3(yr) — 12,
Yar = [(o = 721)? — 227,
G, = Pur/z, Hy= 120 (67)

ZlKg

In fact, Eq. (65) represents two equations.
Each of them separates regions having two
or one inner state. They are plotted in Fig. 5
for 71" = 1 and for various values of the
parameters. One may observe from Fig. 5
that at least one inner state exists.

An overall picture of the nature of the
Jocalized states for the situation depicted in
Fig. 2a is obtained superposing Figs. 3 and
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Fic. 5. Regions of inner localized states in the 2’2”-plane corresponding to Fig. 2a (¢ = 0), H, = 6.0,
¢ =100l,9=091,2 =152 =135 and 7 =1; @) r =1, (b)r = 3.

5. FFrom this superposition (Iig. 6) one may

7. Nature of Localized States for the Situa-

conclude that the maximum number of tions Depicted in Figs. 2b and 2c¢

localized states is four. There are regions,

however, in which the number of localized IFor the situation represented in Iig. 2b
states is three, two or one. If it is one, then the transition from an outer localized state

it is an inner state.

to a volume state takes place for & = 0, and

Fie. 6. Regions of outer and inner localized states corresponding to Fig. 2a (obtained by superposition
of Figs. 3 and 5), 0 = 0.01, 5 = 0.91, 21 = 1.5, 2 = 1.35, 7. = 1 and r = 3. (—) Separates the regions of
outer localized states (0); (— —) separates the regions of inner localized states (I).
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the transition from an inner localized state
to a volume state for & = 0. In Fig. 7, we
represent the corresponding outer localized
states. Ifor the situation represented in Fig.
2¢, the transition from an outer localized
state to a volume state takes place for
£ = 0, and from an inner localized state to
a volume state for & = 0. In Fig. 8§ we
represent the corresponding inner states.

8. Single Component Metal on an A B Support

A figure similar to Fig. 2 can be con-
structed for the volume states (Fig. 9).
Before the metal and support are in contact,
the energy spectrum for the volume states
consists of one band for the metal and two
bands for the support. After contact, the
whole system may have two, one or no
allowed energy bands for the volume states.

Because in this case K; = 1, z; = 0 and
aar = oy, Bgs. (56), which give the bound-
aries between various regions of localized
states, become

(r — 1DH, — rPy,
THS — (7' + ]-)Pj;s

[21’ + 2 F ] 21" + 2]

=", (68)
where

2y = (o1 — ad)/By,
Hs = 7]127721/K2y

21” = (al - al”)/ﬁl;
Pa = 3"

+ [Ee) — 1173, (69)
ye' = los £ 29] — 2%, 00 = (o1 — @2)/Bo-

P sk s e
4+
0
2
%/ 6 ¢
L
-1
-2+
7 LS B

Fie. 7. Regions of outer localized states in the
2’2”-plane corresponding to Fig. 2b (§. = 0), 2z, =
2.0, 22=1.5, 61 =05, .. = 1.1, H. = 1.5, and
7" =1 withr = 1.
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5.—
/4l I 74
3_
2| L
i (Y /4 .
‘JIIL&I]I‘[ .
-5 -4 -3 -2 - | I 2 3 4 5
!

Fic. 8. Regions of inner localized states in the
2'2”-plane corresponding to Fig. 2¢ (& = 0), 2z, =
1.5, 71 =08, ¢1 = 0.3, 2z, = 1.7 and 0" = 1. No
inner local'zed states occur ‘n the shaded area.

A representation in the z,'z:”-plane of Eq.
(68) is given in Fig. 10 for #,” = 1 and for
various values of the parameters. The re-
gions are labeled as in the previous sections.

9. Single Component Metal Supported on
Single Component Metal
If a linear chain composed of a finite
number of atoms of a pure metal is sup-
ported on a semi-infinite metal, K; = 1,
K, =1,z = 0,z = 0and Eq. (68) becomes
(’I‘ —_ 1)H2 bl TP:kz ” 9
T = £ P, | B ]
= 771,27 (70)

[Z{:l:qu

where

H2 = N12M21,
Pyy = §(o2 £ 29) + [(o2 &= 29)* — 1]'%
(a1 — az)/Ba. (71)

Before contact, the energy spectrum for
the volume states consists of one band for
the metal and one band for the support.
After contact, the whole system may have
one or no allowed energy bands for the -
volume states.

oy =

10. Nature of Surface Bonds

The values of the interaction parameters
determine the nature of the bond between
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I o I
NO VOLUME
STATES
I I II

the adatom and the surface of the metal for
a localized state. For a localized state the
clectron is localized either near to the adatom
and/or near to the metal-support interface.
Depending on the “localization” site the
bond can be classified as homopolar, anionic
or cationic. The ratio R between the prob-
ability of localization of the electron on the
adatom and the probability of its localiza-
tion in all the other positions in the system
gives information about the nature of the
hond. This ratio R is given by the equation

|
Er

4:% N*
s
2

2./

Fic. 10. Regions of localized states in the z1'z,"-
plane in the case of single component metal on an
AB-type support Hy, = 1.5, ¢, = 0.1, 7 = 1.5, 2, =
05, r=1andn” =1

®

Fic. 9a,b,c. Energy spectrum for volume states
of single component metal on an AB support.

N
R = lal/lor+ Y lall 72

n=0

Depending on the values of ¢, and all ¢, B
can vary between 0 and 1. There are two
extreme cases

N
(a) cn = 0, Z lc.]2 % 0 so that R =
n =10
0. The electron is not localized at
the adatom, and the adatom is in
the cationic state.
N
(b) e # 0, E le.2 =0 gives R =1,
n =0
and the clectron is concentrated
entirely on the adatom, and the
adatom is in the anionic state.

TFFor the homopolar bond, which is the
intermediate of the two extreme cases,
N

fen|2 = 2 le.]? and R = 14. In this case,
n =0

the electron belongs with equal probability
to both the adatom and the mectal-support
system. Taking the homopolar state as a
reference state, we shall consider that if
R < 14, the adatom is in the cationic state,
and if B > 14, the adatom is in the anionie
state.

The discussion which follows i1s based on
the situation depicted in Fig. 2a.

The adatom wave function coefficient ¢,
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o

for the outer localized states can be written
as

o= m'41/(2” £ 2K, cosh &1).  (73)

For a @ state the plus sign is valid and for
an I state the minus sign. Then, for a
homopolar outer @ state, we have

HUANG

so that R = 0.95. In this case, an anionic
@ outer state occurs (see Fig. 12).
For a volume state, the electron may

helonge to anv atom in thea shain with nrah
A ) WLLJ CUULIILL IR ULILIC LLLIQulll VY Lull PIUU_

abilities depending on the nature of the
atoms. This kind of bond is “metallic.”
In Table 1 several results of our com-

(" + 2K cosh £1)t = =

n=1 2n=1
= 171/
1+ ) [cosh s& + ¢ % sinh &% ++ K? |cosh s& + ij%l sinh s&|2 (74)
1
s even s odd
+ Z 5 sin?(V — m)(igs) + Ky? E == 31n2(N — m)(i&2)
m even m odd
From Eq. (74) and the eigenvalue Eq. (62), . , .
putations are presented. They show the

one can obtain values of 2’ and 2” for which
homopolar outer ® states occur (Fig. 11).
There ¢ curves, both having 2/ = 2”
and z” = —2K; as asymptotes. For in-
stance, a homopolar ® state is obtained for
7’y =1, 2 =200, and 27 = —0.68 when
£, = 0.1. The corresponding wave function
coefficients (unArllormalized) are ¢ = 2.519,

¢o = 1.00 and Zlcn[2 =

n=1

Thara are fn'rn CUrves

5.33.

Obviously, the occurrence of a homopolar
state is a special case; most values of the
interaction parameters lead to states hav-
ing—to a greater or lesser extent—an ionic
character. The regions of occurrence of
anionic or cationie localized states are repre-
sented in Fig 12. OA®C® means that there
is an anionic ® outer state and a cationic @
outer state, OA®CI that there is an anionic
® outer state and a cationic 9 outer state,

whanrn o

WIICLL <

and so on. For instance,

= 0 and %, = 1, one obtains £ = 1.53
and X = 5.06. The corresponding wave
funection coefficients are ex = 0.18, ¢, = 1.0.
In this case, B < 0.04, and a cationic @
outer state occurs. However, for z’ = 0,
2” = —3,and g.' = 1, one obtains ¢ = 1.50
and X = 4.83, and the corresponding wave
277 10,

iy, Co =

— Q
= —o,

Frrm atinnm ana Rotionta are o =
TUIICTioN COCHICICNITS are &y — o.

effect of the number of metal atoms and
the parameters 2’ and ¢” on the nature of the
bond. The values of the parameters not

Trey 11 (Thirve of hamanalar @ anéan atatag im tha
Fig. 11, Curve of homopolar ® cuter states in the
2'z”-plane z, =15, Hy =15, ¢ = 0.1, 4 = 1.1,
2
r =1, and ;1" = 1. (—) Supported metal catalyst
(Y mnna anamisinfinitae matal)
( ) pure semi-infinite metal)
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Fig. 12. Regions where homopolar, anionic, or cationic localized states may occur H, = 1.5, z; =
15,6 = 0.1, r = 1,7 = 1.1andn,* = 1. (—) Separates the regions of outer localized states; (— —)

separates the regions of inner localized states.

mentioned in Table 1 are the same as in
Fig. 12.

11. Composite States

For the bilayers new type of states can
oceur in which the wave function is periodic

in one of the layers and nonperiodic in the
other. This kind of wave function will
be called a composite wave function and
the corresponding states composite states.
Specific to these states is the fact that either
6y or 6, is imaginary. The wave function can

Narure oF Locanizep Bonps IN CHEMISORPTION ON SUPPORTED METALS

X

TABLE 1
No. of
metal atoms 2’ 2" & X
2 —-3.00 —3.20 1.66 5.64
2 2.00 —0.68 0.1 2.508
®© 2.00 —0.68 0.83 —1.365
2 0.00 —-3.00 1.50 4.83
o 0.00 —3.00 1.10 1.66
2 —3.00 0.00 1.53 5.06
o —-3.00 0.00 1.185 1.785
4 —3.00 0.00 1.52 5.03
12 —3.00 0.00 1.52 5.03
2 —2.00 0.00 1.23 3.08
o —2.00 0.00 0.86 1.393
4 —2.00 0.00 1.26 4.09
2 1.55 3.00 0.2 —2.53
% 1.55 3.00 1.19 —1.80
2 0.5 0.5 2.00

e N S T U U G VU G GO |

Co

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

R

Type of bond
Homopolar @
Homopolar @
Cationic 9
Anionie @
Anionic @
Cationic ®
Cationic @
Cationic @
Cationic @
Cationic ®
Cationic @
Cationie ®
Cationic 9
Anionic N
Metallic
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be nonperiodic in the metal and periodic in
the support, and then a localized state at
the metal surface and adatom can occur.
The wave funetion can be periodic in the
metal layer and exponentially decaying in
the support, and in this case the clectron
belongs to the whole metal layer.

CoNcLUSION

The support affects the chemisorption
process: (a) by modifying the energies of
nonlocalized volume states and those of the
localized states and (b) by generating com-
posite states, which have a periodic wave
funetion in one of the layers and a non-
periodic wave function in the other.

The influence on the volume states is
shown in Figs. 2 and 9, from which the
following observations can be made. A
single component finite chain of metal with-
out support has a single band; with an
AB-type support the complete system can
have two bands. An A’B’ finite chain of
metal without support has two bands; with
support there are conditions in which the
whole system has only one band. Two
semiconductor layers (each of them repre-
sented independently by two bands) can
have a single band for the volume states
(as the metals). Metal-semiconductor layers,
which independently can be represented by
one-two bands, may together have no
volume states.

The influence of the support on the local-
ized states is shown in Table 1. Depending
on the number of atoms of the metal and
the nature of the support, the localized bond
can change from anionie to cationic.

For the range of parameters used in this
paper, the number of metal atoms has an
effect on chemisorption if it is less than 5 to
10.

States specific to bilayers occur. They
have periodic wave functions in one of the
layers and nonperiodic wave functions in
the other. If the wave function coefficients
are larger in the layer having a periodic
wave function, the electron will belong to
that whole layer.
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APPENDIX A

Solutions of Eqgs. (9) and (10)

Inserting Eq. (16a) in Eq. (10a), and
Eq. (16b) in Eq. (10b) yields

(E — as)a™ = B(y™ + y™t); m even,
(A1)

(B — ap)y™ = Bala™t + 2™™); m odd.
(A2)

t. For m Even

Eliminating y between Egs. (Al) and
(A2) one obtains

(E — aA) (E - aB)x”‘
= Bo*(xmt? + 2zm + am?),
le, (8 — aa)(E — ap)x?
= Bzt + 222+ 1) = Bl (x® + 1)
or £[(F — as)(B — a)]¥?x = Ba(z® + 1),
which can be written as
22 —Az+1=0, (A3)
where
A= 2[(E — as)(E — ap)]"?/B
The solution of Eq. (A3) is
T = A2+ [(A/2)2 — 1]z (A5)

Denoting

(A4)

A = 2cos s, (A6)
2 can be written as
& = cos 0y & 7sin 0 = exp(k 6:). (A7)

Thus, the general solution of (Al) may
be expressed as

am = ¢y = Ceim by + De—imb,

= A; cosmbs + Bssinmb, (AS)
in which
A; =C+ D, By =1iC — D). (A9)
Because cy = 0, Eq. (A8) leads to
B __ _ As COSN02.
8= sin N@.
Therefore
_ A 3 COS N02 .
Cm = Ag cos mly — m— sin mf2
_ As . _
= Sn NG sin (N — m)8,
= Assin (N — m)fs. (A10)
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it. For m Odd

Introducing 2~ from (A10) in Eq. (A2),
one obtains

(F — aB)y"‘ = Bg(Az Sin(N - m + 1)02

Because [Eq. (16b)] y™ = c¢., Eq. (All)
becomes

Y™ = Cp = Koo sin(N — m)b,, (Al12)
where

Kz = 2ﬂ2 CcOos 02/(E —_ OZB). (Alg)

From Eqs. (A4) and (A6), one obtains
4822 c0s? s = (B — aa)(E — ag). (Al4)

Defining a dimensionless energy by

Xo = (F — @)/Bsy, & = (aa + ap)/2,

(A15)
Eq. (Al4) can be written as

X22 - 222 =4 0082‘62, (A16)

sin (N — 1) (ua + 7 £2)
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¢s = Ay cos sf; + By sin sy, s even,

¢, = K1(A; cos sy + Bisin s61), s odd,
(A18)

where

Il

K1 261 Ccos 01/(E -_ aB')
2 cos 0/ (X1 + z1)

= [(E — as)/(E — ap)]'?. (A19)

The forms of (A18) arise by introducing the
parameter 6; via

X2 — 2,2 = 4 cos? b, (A20)
where

Xy = (I — &1)/py,

21 = (aa — ap’)/26,

& = (as + ap)/2. (A21)

X and ¢z, are the dimensionless energy and
composition parameter of the metal, re-
spectively.

ArpENDIX B

Derwations of Eqs. (46) and (56)
Inserting Eq. (42) in Eq. (35) yields

(B1)

f60) = G N =+ = 1 £ 1 52)

_ sin(N — r)us cosh(N — r)§s + 7 cos(N — r)us sinh(N — r)&

~sin(N — r — Duzcosh(N — r — 1)fs + 1 cos(N — r — Dpesinh(N — 7 — D&
where

22 = (aa — an)/2B: (A17)

S = lim f(6,)
N— o

For large value of N, Eq. (B1) can be ap-
proximated by

_ eV NN — P)us + 7 cos(N — r)us)

eW—rDEGIN(N — r — Dus + 2 cos(N — r — 1)ps]
eEz[Sin(N -— T)/.tg + iCOS(]V - T)“2]<_i)

" [sin(N = 7 = Dz + 5 005N — 7 — Dol (—7)

- efze—‘if.\'—‘r)m /e—i(A\"~—r~I)u2
/
= elb—im),

18 the composition parameter of the sub-
strate.

Similarly, the solutions of Egs. (9) for
the metal, by inserting Eq. (16a) in Eq.
(9a), and Eq. (16b) in Eq. (9b), are

(B2)

Since 6 = uy + ¢ £, Eq. (B2) ean be written

as
f=¢€e% = cos By — 7sin .

From Egs. (27) and (B3), one obtains

(B3)
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f= o £ n(z:2 + 4 cos? 6;1)V2]2 — 2.2}12 4 (1 {[o =+ n(z:% + 4 cos® 6,)12]? — 2%} — 1YV
(B4)

For 6; = £y, # 4+ 2¢1, Eq. (B4) becomes

g = o = n(z1® + 4 cosh? £1)2]2 — 2,2} 12 + (f{[o &= n(2r® + 4 cosh? £1)V*] — 227} — 1)'72,

(B5)
For 8, = (x/2) + &1, Bn/2) + 15, Eq. (B4)
becomes
g1 = }{[o & (21> — 4sinh? £)V2)2 — 2,2}/ + (3 {[o =& n(z1® — 4sinh? £)'2 — 2%} — 1Y%,
(B6)
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