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A quantum-mechanical met,hod is used to obtain information about the nature of bonds 
in chemisorption on supported metals. The calculations are based on an unidimensional 
model composed of a finite chain of metal atoms and a semi-infinite chain of support,. The 
linear combination of atomic orbitals and the t,ight-binding approximation are used to 
construct the wave funct,ion of one electron in the field of the chain of metal atoms, sup- 
port, and chemisorbed at’om. 

The support affects the chemiaorption process, modifying the nonlocalized volume 
states (states with periodic wave function) and the localized states (states with non- 
periodic wave funct,ion); also generating new types of states in which the wave fun&on 
is periodic in one layer and nonperiodic in the other (composite states). For instance, a 
single component finite chain of metal atoms (without support,) has a single band fol 
the volume states; with an A&type support, the complete system can have two bands, 
one band or no band. The locaalixed states can be localized at, the adatom-metal surface, 
and/or at the metalkupport interface. Also, depending upon the number of metal at,oms 
in the chain and the nature of the support, the bond due to a localized state can change 
from anionic t,o cationir. For a composite state having wave fmlction coefficients larger 
in the layer which has a periodic wave function, the electron will belong to that, whole 
layer. 

1. INTH~D~~cTI~N 

The distinction between physical adsorp- 
tion and chemisorption is based upon the 
forces involved. In physical adsorption, t,hc 
forces are similar to t’hosc responsible for the 
liquefaction of inert gases, while chemisorp- 
tion implies a “chemical bond.” Two points 
of view have been formulated concerning the 
nature of t’he chemisorption bond. In the 
first, one considers a bond with t)hc metal as 
a whole, in the second, one considers a bond 
generating a chemical compound wit,h only 
some metal atoms of the interface. Compar- 
ing the heats of chemisorption of different 
gases on different solids and the heats of 
formation of bulk solids, Sachtlcr (1) not’iccd 
t,hat they show t’hc same trend: thcb heats of 
rhemisorption are greater for greater heats 
of formation. From this observation, the 
useful conclusion was reached that a “chemi- 
cal compound” is formed between the 
chemisorbed gas and the metal atoms of 

the surface. It, is, ho\vcvcr, important to 
note that t’he surface compound does not, 
necessarily have the same properties as a 
bulk solid of similar chemical composition; 
t’he heats of chcmisorption appear to be 
always great)er. Consequently, it appears 
t’hat a chemical compound is formed on the 
surface, but, this compound interacts in an 
important, manner with the bulk of the 
metal. It’ is nat,ural to conclude that the 
chemisorption bond cannot’ be restricted to 
one of the t,wo limit,ing situations suggested 
by the “chemical” or “physical” intuition, 
but is a combination of both. 

The first, theoretical approach to t,hc 
problrm has considered that, the bonds on a 
metal surface arc not, t)oo different from 
those acting within the bulk of the metal. 
However, in the quantum-mechanical treat- 
ment, of a solid having a free surface, special 
st,ates occur (Tamm surface states) and, 
consequently, one may expect, a similar, 
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more compli&ed, behavior when a chemi- 
sorbed layer is formed at the interface. Such 
an approach to the problem was developed 
by Koutecky (.2), Grimley (3), Davison and 
Cheng (4), and others (5-9). Most of the 
work is based on a unidimensional semi- 
infinite chain of metal atoms having a 
chemisorbed atom (adatom) at one end. 
The LCAO (linear combination of atomic 
orbitals) approximation is used to construct 
the wave function of one electron in the 
field of the chain of metal aboms plus adatom. 
The energy levels, as well as the coefficients 
of the atomic wave function, are determined 
using a variational method and the tight- 
binding approximation which takes into 
account resonance integrals, but neglects 
overlap integrals. If the wave function de- 
cays inside the crystal, the electron is 
localized at the adatom-metal surface 
(localized states). If the wave function has 
a periodic shape, the elect’ron belongs to the 
whole system (nonlocalized volume states). 
Depending upon the values of the inter- 
action parameters between the metal atoms 
and between the adatom and metal, the 
localized states can lead to homopolar or 
ionic bonds. The nonlocalized volume states 
lead to metallic bonds. 

For supported metal catalysts, the prob- 
lem is more complex. The experimental 
evidence appears to show that there are 
two classes of reactions: in the first, the 
specific activity of the catalyst (defined as 
the rate per unit exposed area of metal) is 
independent of the crystallite sizes; in the 
second, it depends on the crystallite sizes. 
Several types of size dependencies have been 
reported in the literature (10-18). 

Concerning the supported metal catalysts, 
two questions can be raised, namely: (a) 
what is the effect of the size of the crystallite 
upon the chemisorption bond? and (b) what 
is the effect, of the interaction between the 
support and metal upon the chemisorption 
bond? Some answers to these questions were 
obtained in this study on the basis of a 
quantum-mechanical approach similar to 
t,hat used previously for the chemisorption 
on a semi-infinite metal. The main conclu- 
sions are: (a) The presence of the support 
affects the range of parameters in which 

various types of localized states exist, and 
also the nature of the corresponding bonds. 
For instance, depending upon the thickness 
of the crysballites, a bond due to a localized 
state can change from homopolar to ionic, or 
from anionic to cationic. The localized states 
can be localized at the adatom-metal sur- 
face, and/or at the metal-support interface. 
(b) The presence of the support has a strong 
effect on the number of bands for the volume 
states. For instance, a single component 
finite chain of metal atoms (without support) 
has a single band; with an AB-type support, 
the complete system can have two bands, 
one band or no band. (c) Composite states 
with a periodic wave function in one of the 
layers and nonperiodic wave function in the 
other can occur. 

METHODS AND RESULTS 

1. Chemisorption Model and Basic Equations 
For simplicity, a one-dimensional model 

is considered (Fig. 1). It consists of a linear 
chain composed of a finite number of atoms 
of a pure metal or of an alloy supported on a 
semi-infinite substrate (an oxide for in- 
stance). For purposes of illustration, t.he 
alloy is considered as a combination of the 
type Ai%/ (i and j can be any positive 
integer; here we take i = 1 and j = 1 for 
convenience in the calculation) and t,he 
oxide as a compound of the form AB; an 
adatom is in interaction with one end of t,ho 
chain, say A’ metsal atom. The atoms in the 
chain are numbered 0, 1, , . . , N, and the 
adatom is denoted by X. Associated with 
each atom n is an atomic orbital a”. The 
wave function \k of a single electron in the 
system is expressed as a linear combination 
of the atomic orbitals Cp,, in the form 

The coefficients c,, are determined by using 
a variational method. The wave function 
\k satisfies the one-electron Schroedinger 
equation, 

H9 = E*, (2) 

where H is the effective one-electron Hamil- 
tonian operator for the whole system, chain 
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FIG. 1. Model for an adatom interaction with a finite A’B’-type metal supported on a semi-infinit,e 
AB-type oxide. 

plus adatom (the interaction between elec- 
t,rons is neglected), and E is the correspond- 
ing electron energy. Substituting Eq. (1) 
into Eq. (2), mult’iplying through on the 
left by @Jo* and integrating over all space, 
one obtains the system of equations 

c 
(H,, - ESmn)Cn = 0, (3) 

?I 

where 

and 

H,, = J%,*H%&, (4) 

s,, = J@m*Rdr. (5) 

Assuming { &) form an orthonormal set, so 
that, S,, = L,, then Eq. (3) becomes 

[E - Hmlc,, = 1 Hmc,. (6) 
WL#n 

If the atomic orbitals @n are sufficiently 
localized on the atom n, t,he Hamilt,onian 
matrix elements H,, are negligibly small 
for m too different from n. According to the 
tight-binding approximat,ion, H,,, is diffcr- 
ent, from zero only for m = n and m = n f 
1. Because H,, is symmetrical in m and 
n,, it) follows that H,+l,,, has the same value 
whct)her n is odd or even. The values of 
H Wtl,n are denoted by PI and pZ for the 
atoms of metal and of substrate, respcc- 
tively. Because we consider an alloy of t,ype 
A’?‘,. where the atoms A’ are in the even 
posltlons and the atoms B’ in the odd posi- 
tions, we have two valws for H,,: 

i 

H,, = aA’, s even (A’ atom), 
O<S<T 

H,, = o(B’ s odd (B’ atom). (7) 

where r + 1 is the number of metal alloy 
atoms. Similarly, for the substrate we 
denote 

i 

H +,,m = (YA, m even (A atom), 
r+l<m_<N 

H n&m = CYB, m odd (B atom). (fo 

The quantities fiL and (~1 are the resonance 
integrals and the Coulomb integrals, rc- 
spectively. Physically, the QI’S represent the 
effective energy of an electron in an atomic 
orbital, and the /3’s the bond energy between 
the nearest-neighbor atoms. The tight-bind- 
ing approximation reduces the complexit,y 
of Eqs. (6), which now become a set of second 
order difference equat’ions with constant 
coefficients of the form: 

i 
(E - cY**)c, = Pl(C,-1 + &+I), s even: 

1 
OLsLr 

W - cw)cs = PI(c,-I + c,+l>, s odd, 
(9) 

and 

(E - a,.& = Pz(cm-1 + cm,.,), 
m even, 
r+l<m<A 

(Ik,’ - OLB)Cm = Pdcm-1 + G&+1), 
m odd. (10) 

The perturbations int,roduced by the 
presence of the adatom at the end of the 
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chain and by the interaction between the 
last metal atom in the chain and the first 
atom of the support are described by some 
new Coulombic and resonance integrals. The 
adatom is characterized by a Coulomb in- 
tegral Hxx = CY*, which is different from that 
of the atoms of the chain. The effect of the 
adatom on the first atom of metal of the 
chain is accounted for by the Coulomb in- 
tegral (YAP* (replacing (Y,, for the bulk) and 
by the resonance integral pl* between t’he 
adatom and the nearest atom of metal. The 
resonance integral between the last met)al 
atom and the first atom of the support is 
denoted by &, which is different, from both 
P1 and 02. Since the support is semi-infinit,e, 
i.e., N is large, the boundary condition for 
1% = N cannot affect the conditions near 
n = r and n = 0; hence one may assume 
CN = 0. Therefore, Eqs. (9) and (10) for the 
unidimensional chain model are to be solved 
for the boundary conditions: 

(E - a*)cx = p1*co, (11) 
(E - aA'*)CO = p1*cx + PlCl, WI 
(E - cyB~)CT = PlCr-1 + /312Cr+l, (13) 
(E - a&+1 = p12G + p2cl.+2, (14) 
&?,7 = 0. (15) 

9. Solutions of the Equations and the Eigen- 
value Equation 

In order to solve the difference Eqs. (9) 
and (lo), solutions of the form 

c, = x”; m even, (164 
cm = ym; m odd, (16b) 

are sought. The general solutions of Eqs. 
(10) for the substrate (App. A), satisfying 
the boundary condition (15), are 

&I& = AZ sin(N - m)&; m even, 
Cm = Kd2 sin(N - m)&; m odd, (17) 

X2 = (E - c2)/P2, 

22 = (a* - (YB)/2P2, 
a2 = (a* + (YB)/2. 

The quantities XZ and 22 represent 
dimensionless energy and composition 
rameter of the substrate, respectively. 

Similarly (App. A), the solut’ions of 
(9) for the metal are 

(20) 

t,he 
pa- 

Eqs. 

C, = A~coss&+ B1sinsffl; seven, 
c, = K~(AI cos s81 + BI sin sol); s odd, 

(21) 

where A, and B1 are constants, 

K1 = api cos t?l/(E - CXB’) 
= 2 cos &/(X1 + 21) 
= [(E - wr)/(E - CX,~)]~‘~, (22) 

Xl2 - 212 = 4 cos2 I9 1, (23) 

and 

XI = (E - &)/PI, 
21 = (crap - (YB')&%, 

El = (a.49 + (YrV)/2. (24) 

The quantities X1 and z1 are the dimension- 
less energy and composition parameter of 
the metal alloy, respectively. 

Inserting Eq. (21) into Eq. (11) for co, one 
obtains the adatom wave funct,ion coefficient 

CA = ?II’AI/(XI - ZI + 2”) 
= rl:A~/(~” + 2K1 cos 0,) (25) 

where 

w’ = Pl’/P,, 2” = (a.~ - a*)/Pl. (26) 

The quantities .z” and $ are dimensionless 
parameters arising because of the adatom 
at the end of the chain. 

The parameters @I and &, introduced in 
Eqs. (19) and (23), are not independent 
quantities. Eliminating E between Eqs. (19) 
and (23), we can express & in terms of e1 by 
means of 

where A, is a constant, and 2 cos 82 = ([u f 7)(212 + 4 cos2 L%p212 
Kz = 2Pn cos &/(E - a~). (18) - 222 ) 1’2, (27) 

The forms of Eq. (17) arise as a result of where 
introducing the parameter 02 via 

u = (El - a>/@,, q = s1/a2. (28) 
x22 - z22 = 4 0082 e9 ., (19) Introducing the solutions (17) and (21) 

where into the boundary conditions (12), (13) and 
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(14), we obt#ain the system of homogeneous 
equat’ions 

[(z’ + Kl cos 81)(zN + 2K1 cos e,) - &]A1 
- [Kl sin &(z” + 2K1 cos 0,)]Bl = 0, (29) 

[K1 cos n!b]A1 + [K, sin rtV1]B1 - F< sin (N - r)& (30) 

[cos(r + l)&IA1 + [sin(r + i)ellB1 
- [q12 sin(N - T - l)eJA2 = 0, (31) 

whew 

2’ = (cr.Y - aA’*)/Pl, 
7712 = P12IP1, 

rl21 = PlZ/P2. (32) 

Tho quantity Z’ is a dimensionless parameter 
characterizing the first metal atom. The 
quantities ~~2 and vzl are dimensionless pa- 
rameters characterizing t,he interaction be- 
t’wcen the first atom of the substrate and 
the nearest metal atom. 

The system of homogeneous Eqs. (29), 
(30) and (31) has nontrivial solutions, if the 
determinant composed of the quantities 
which multiply A1, B, and A2 vanishes, 

(2’ + K1 cos e,) - K1 sin e,(z” + 2K1 COR e,) 0 
x (2” + 2K1 cos e,) - 7J 

K1 cos Tel K1 sin rel 

COS(T + i)el sin(r + i)el 

Kz . 
- z sin(N - r)& = 0 

-q12 sin(N - T - i)e, 1 
(33) 

The determinant (33) can be rewritten in the system of homogeneous Eqs. (29), (X0), 
the form and (31) leads to 

Equation (34) is the eigenvalue equation 
for the allowed energy levels. It involves a 
number of dimensionless parameters which 
t,ake into account the chain of met’al atoms 
and the perturbation effects of t’he t,wo inter- 
faces (those of the adat’om and of the sup- 
port’) on t,he state of the electron. Depending 
upon the values of these parameters, either 
or both of &(l = 1,2), determined by Eqs. 
(34) and (27), can be real or complex. Real 
values of both e’s represent, nonlocalizcd 
volume states, since they lead to periodical 
wave fun&ions which spread throughout t’hct 
entire system composed of met,al and sup- 
port’; complex values of both B’s represent 
localized st’at)es, because they lead to xvavc 
fun&ions composed of exponent,ials in each 
of t,he layers. The localization point has t,hr 
highest probability density. Real values for 
one of the B’s and complex values for the 
other lead to states for which the wave 
function is periodic in one of the layers and 
exponential in the other. The name com- 
posit,c states is given to t)hcm. 

For each of the cigenvalues of Eq. (34) 
-.- __- --~ ~.-~~~~ ~~ ~~ 

Bl 
-= 

COS(T + i)elf(e,) - Hi cos 73, 

AI H, sin r& - f(&) sin(r + i)e,’ 

A2 KITPII sin 6$ - = -_ 

Al K2 sin(N - T - l)e,[f(e,) sin(r + l)eI - H, sin re,]' _____ 

(36) 

(37) 

2’ + K, cos e1 3. Volume States 

_ Kl COS(T + i)ef(e2) - H, cos 76 sin e1 The real values of & are restricted to the 

H, sin r& - f(e2) sin(r f-l)& I 
range 0 < 81 I a, for which we have 0 < 

x (c + 2Kl cos el) = ql,2, 
cos* et I 1. It follows from Eqs. (19) and 

where 
(34) (23) that the allowed energies lit in two 

f(e,) = sin(N - r)e2/sin(N - r - 1)e2 
bands, the edges of which have upper or 

= c0se2 + cot(N - r - 1)e2sine2. (35) 
lower bounds given by the expressions: 

and Xl = f(z12 + 4)1’2 for cos2e, = 10 = 1,2), 
H, = KPI~I~I~Kz. (38) 
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x1 = f.zl for cosz & = 00 = 1,2). generate the nonperiodic wave functions: 
(39) 

In terms of the energy E, Eqs. (38) and 
(39) can be written as 

Ce = Al(cos 8~1 Gosh ~$1 - i sin spl sinh sfl) 
•k Bl(sin SPI cash .s& 

-l- i cos spl sinh s&) ; s even, 
E*o,z = 5’1 f P&z” + 4)“2, (40) 
J&J = EZ f Pzzz, (41) 

where the subscripts O(1) refers to the outer 
(inner) bounds of the energy levels. The 
sign +( -) indicates the highest (lowest) 
bound. 

Each of the mathematical conditions 
0 < 81 < s and 0 < 02 < r leads to two 
bands (Fig. 2a). Because the energy levels 
E are a consequence of the interactions of 
the electron with the complete system (metal 
plus support), the allowed values of the 
energy for the volume states will be those 
which satisfy both mathematical conditions 
simultaneously. 

Depending upon the values of the energy 
bounds E,o,, and E&I, i, several possibilities 
exist. Some are represented in Fig. 2a-e. In 
each of these figures, the bands I are ob- 
tained from the conditions cos2 & = 1 and 
cos2 01 = 0 and the bands II from t*he condi- 
tions cos2 e2 = 1 and cos2 & = 0; the bands 
III contain the regions which supperpose 
from the previous bands. The edges of the 
bands III represent bounds (upper or lower) 
for the volume st,ates. 

As mentioned before, the wave functions 
for nonlocalized st<ates are periodic. How- 
ever, the amplitudes and periods of the 
wave function coefficients are not the same 
in the metal and support. 

In principle, one may observe t,hat, within 
the framework of the LCAO approximation, 
situations may arise for which no volume 
states exist (Fig. 2e). The absence of volume 
states implies the presence of composite 
states (but the existence of composite states 
does not exclude the possibilities of volume 
states). For instance, the wave functions 
can be periodic in the metal layer and decay 
in the support. In this case the electron 
belongs to the whole metal layer. 

4. Localized States 
Complex roots of the form 

ez = fiz + it2 (42) 

ca = K&~I(COS S/AI cash s& 
- i sin spl sinh .stl) 
+ Bl(sin Sol cash s& 
+ i cos Sol sinh s&)] ; s odd, 

in metal, and 

(43a) 

c m = An[sin(N - m)p2 cosh(N - m)& 
+ i cos(N - m)~2 sinh(N - m)t2]; 

m even 

Gn = KJz[sin(N - m)p2cosh(N - m)t2 
+ i cos(N - m)p2 sinh(N - m)t2] ; 

m odd, (43b) 

in support. 
Substituting Eq. (42) into Eqs. (19) and 

(23), the condition that the dimensionless 
energy should be a real quantit’y leads to 

pz = pm; k = 0,1,2, . . . . (44) 

From this expression, two types of solutions 
can be generated, depending on whether k- 
is even or odd. However, only Ic = 0, 2, and 
k = 1, 3 need be considered, because all 
other values repeat these solutions. Hence, 
from Eq. (42) we have 

82 = ifz, x + iEt; k even, (45a) 
Oz = a/2 + i&, 3?r/2 + ill; k odd. (45b) 

As shown in Sets. 5 and 6, when Ic is even, 
the energies calculated from Eqs. (19) and 
(23) lie outside the main energy bands of 
the volume states; such states are called 
outer states; when k is odd, the energies 
calculated from Eqs. (19) and (23) are 
located inside the forbidden energy gap; 
such states are called inner states. 

Information about the properties of the 
states described by the wave functions 
(43a) and (43b) are obtained from the prob- 
ability density. The probability density is 
equal to lcJ2. For 82 given by Eqs. (45a) and 
(45b) the probability density decreases ex- 
ponentially within the support. Using Eq. 
(al), the wave function coefficients for the 
metal can be rewritten as 
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FIG. 2. Energy spectrum of slipported metal for t,he volume states: (a) z1 = 1.5, z2 = 1.35, fll = 1, pL = 
1.1, EI = 2.5, ~2 = 2.49; (b) 21 = 1.5, 22 = 1.7, (31 = 1, 02 = 0.8, dl = 2.5, 2.36; (c) z1 1.7, z2 & = zz = 
1.5, @, = 0.8, & = 1.0, tzi = 2.36, dr = 2.5; (d) 21 = 2.0, z2 = 0.5, p1 = 1.0, & 0.5, s1 3.0, a* = = = 
(e) z1 = 2.0, z2 = 0.5, B1 = 1.0, p2 = 0.5, d, = 3.0, 

1.5; 
a2 = 2.45. 

c,< = +(l + Kl)[(ill - iB&ia@, Cs = (&1)*[0@ + bIe-Jcl] (47) 
+ (A I + iRl)e-i*s 1. (46) whew 

Considering the values for O1 from (&a), al = 3(1 + KI)(A1 + iB1), 
one obtains h = +(l + KI)(AI - iB1). (48) 
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The plus (minus) sign in Eq. (47) corre- 
sponds to the first (second) Eq. (45a). The 
probability density is given by 

(49) 

where bl* is the complex conjugate of b,. 
If [aJ2 < lbJ2e- 4rE~, then d[c812/ds is nega- 

tive, and the electron is ‘Llocalized” at the 
adatom-metal surface. If la112 > lb112, then 
dlc,12/ds is positive, and the electron is 
localized at the metal-support interface. If 
\bl12e-4rC < la112 < lb1[2, dlc812/ds changes 
sign inside the metal layer, and the prob- 
ability density is high both at the adatom- 
metal surface and metal-support inter- 
face. Considering the values for til from 
Eq. (45b), similar results are obtained if 
,one replaces al and bl by 

a2 = +(l + &)(-B1 - L41) and 
bz = $(l + Kl)(Bl - L441). (50) 

Values of & are obtained introducing Eqs. 
(45a) or (45b) into the eigenvalue Eq. (34) 
(see Sects. 5 and 6). 

The complex roots (42) lead to states 
which are localized either at the surface 
of metal and adatom or at the metal-support 
interface. Under some conditions (specified 
above) the probability density is high both 
at the surface of metal and adatom and at 
the metal-support interface. Of course, the 
probability density in the latt,er case may 
be higher (or even much higher) at one of 
these points. 

b. Outer Localized States 
The existence conditions of the outer 

localized states are found by substituting 
e2 from Eq. (45a) into the eigenvalue Eq. 
(34) [Eq. (27) is used to eliminate 82 from 
Eq. (34)]. For large values of N, f(&> can be 
approximated by g, where (see App. B) 

g = $([u zt rl(z12 + 4 cosh2 &)1’2]2 - z,~} 1'2 

+ ($( [u f T&ZI~ + 4 cosh2 &)1’2]2 - 22") 

- 1)1’2. (51) 
One obtains 

lz’ zt K+I cash El 
L 

;cosh(r + l)& - H, cash r& 
=F Kf’H, sinh r& - g sinh (T + l)E1 

sinh &J 

x [z” f a&, cash [I] = 711”, (52) 
where 

K,I = [(z? + 4 cosh2 Fr)1’2 =F 21]/2 cash (1. 
(53) 

When solutions of Eq. (52) exist,, they lead 
to energies above the top edge of the upper 
band and below the bottom edge of the 
lower band. Indeed, the upper signs in 
Eqs. (51), (52) and (53) correspond to 
solution of Eq. (34) with & = i& and, 
hence, energy 

E = 31 + /3l(z,” + 4 cosh2 ~1)“~. 

If P1 is positive, such states are situated 
above the top edge of the upper band (anti- 
bonding) (see Fig. 2). The lower sign corre- 
sponds to solution of Eq. (34) with & = 
rr + itI and, hence, energy 

E = ~1 - pl(zl” + 4 cosh2 &)1’2. 

If p1 is positive, these states are situated 
below the bottom edge of t’he lower band 
(bonding state). The state will be called 6 
state when X1 > 0 and z state when X1 < 
0. In Fig. 2a, the depth of the outer level 
below (above) the bottom (top) of the lower 
(upper) band is 

E, = \P,(z,~ + 4 cosh2 [1)1’2/ 
- IPl(z,2 + 4)“2/. (54) 

For large band gap width Eq. (54) can 
be approximated by 

E, = 
2/31 sinh2 [I 

21 
(55) 

For the situation depicted in the Fig. 2a, 
the energy levels of the outer localized 
states coincide for fl = 0 with the top of 
the upper band or the bottom of the lower 
band of the volume states. Taking C;, = 0 
in Eq. (52), one obtains 

z’ f 2Kh1 =F Kg 
(r - l)H, - rP* 
rH, - (T + l)P+ I 

where 

X [z” zt 2K*11 = VI’*, (56) 

K*I = [(z12 + 4)1’2 =F zU2, 
P* = ;(y*)“” + MY*, - 111’2, 
y* = [u f &I2 + 4)“2]2 - 222. (57) 

Because of the plus and minus signs, 
Eq. (56) represents two different equations. 
Because one localized state changes to a 
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nonlocalized stat,c for EL = 0, each of these 
tquations is the boundary between regions 
containing two and one, or me and zero 
localized outer stat,es. A representation in 
the z’z”-plane of F,y. (56) is given in Fig. 
3aPv for ql” = 1 and for various values of 
the parameters. The various wgions arc’ 
labeled according t,o t,hrb sign of X and the 
number and nat8urc of the> localized outer 
stat’es occurring. Thus, six wgions of local- 
izc>d stat,es c>xist,. For instant, in a FJZ? region 
tM.0 outer x states occur, whik in A (PX 
region t h(w arc one outer CI’ state and one 
outer x state, and so OIL The> shaded area in 
Icig. 3 represents values of x’ and Z” for 
whic~h no outer localized statw occur. Conse- 
(lwntly, depending on the interaction pa- 
r:uwtcw z’, 2 and ql’ botn-wn the adat,om 

and tlrr supported metal catalyst, the 
system may have two, one or no localized 
outer statw In the region in which 

7)/ < L’iz1* + 2) 

- fc+1* 
I 

(r - l)H,. - rP+ 
rW,. - (r + l)P+ I 

- h’-l’ 
! 

(r - l)HC - rP- 
rfl,. - ir + 1) I-‘.. I 

, (;,r;j 

no outer localized state clxists. Th(> arw of 
the closed region, is giwn by 

FIG. 3. l<egions of outer localized states in the 
z’P’-plane corresponding to Fig. 2a (Ed = 0), H, = 
1.5, D = 0.1, TJ = 1.1 and 41” = 1; (a) r = 1, z, = 
1.5, (b) r = 3, ZI = 1.5, (C)I. = l,.q = 2.0. No 
ou’er localized states occur in the shaded area. 
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In Fig. 4 v is plotted vs r for z1 = 1.5 and 
various values of the parameters H, and 
7. As expected, if the number of the metal 
atoms increases, the influence of the support 
on the whole system decreases. In the range 
of values used in Fig. 4 for the various 
parameters, the effect of the support can 
be neglected if the number of metal atoms 
1’ + 1 is between 5 and 10. 

The energies of the inner states are given by 
the equations 

E = ~1 + pl(x12 - 4 sinh* &)1/2 

and 

E = s1 - pl(z12 - 4 sinh2 &)l12. 

6. Imer Localized States 
The occurrence of the inner localized 

states is examined by subst’ituting Eq. (45b) 
into the eigenvalue Eq. (34). Eliminating 
& by means of Eq. (27) and approximating 
(because N is large) the function f(&) by 
yl [Eq. (61)] (see App. B), one obtains 

If p1 > 0, the first is an inner 6 state and the 
second an inner z state. Referring to Fig. 
2a, the height of the inner level above the 
top of the lower band edge is 

Et = jPm2 - PI& - 4 sinh2 &)1/2/. (63) 

For large band gap width, Eq. (C3) can be 
approximated by 

E, ‘v 2P1 (sinh2 &)/zI. (64) 

z’ f i&“) sinh [I F &I(‘) gl cos(r + l)(%" + i5) - H, cos rC%" + i&j coshEl 
H, sin ~(24~ + ill) - 91 sin(r + l)(%” + $1) ’ 1 

where 

g1 = ${h] l/2 + [i(h) - 111’2, 
h = [a + T@12 - 4 sinh2 ,Q1’2]2 - zz2 (61) 

and 

“t 

01 / I I I 1 I 
5 IO I5 20 25 30 r 

FIG. 4. Area of the region from Fig. 3 in which 
no outer lozalised states occur vs number of metal 
atoms. 

In order to identify various regions of 
inner states, one must take into account 
that, for the situation represented in Fig. 2a, 
a localized state is transformed into a volume 
state when [I = 0. The boundaries separat- 
ing the regions can thus be obt)ained taking 
l1 = 0 in Eq. (60): 

where 

[z’ f a]z” = ~1 (6-5) 

-G+ . a = HI - (T + l)p*r’ r odd, (66) 

with 

P*r = g(y*I)“2 + MY*r) - 111’2> 
y*I = [(a f 7]21)2 - z*"l* 

In fact, Eq. (65) represents two equations. 
Each of them separates regions having two 
or one inner state. They are plotted in Fig. 5 
for 7jl” = 1 and for various values of the 
parameters. One may observe from Fig. 5 
that at least one inner state exists. 

An overall picture of the nature of the 
localized states for the situation depicted in 
Fig. 2a is obtained superposing Figs. 3 and 
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FIG. 5. Regions of inner localized atat.es in the z’z”-plane corresponding to Fig. 2a (tl = 0), H, = 6.0, 
,J = 0.01, TJ = 0.91, z1 = 1.5, zr = 1.35, and vl” = I; (a) T = 1, (b) T = 3. 

5. From this superposition (Fig. 6) one ma) T’. Alrature of Localized States fhr the Situa- 
conclude that t’he maximum number of tions Depicted in Fiys. 26 and dc 
localized states is four. There are regions, 
howcvcr, in which t#he number of localized For the sitjuation represented in lcig. 2b 
st,at,es is t,hree, two or one. If it is one, then the transition from an outer localized state 
it is an inner stat,e. to a volume state t’akes place for t? = 0, and 

OJP2 

L,, 
5 6 ------ 
I IL& t 

mm 

FIG. 6. Regions of outer and inner localized states corresponding to Fig. 2a (obtained by superposition 
of Figs. 3 and 5), CT = 0.01, 7 = 0.91, z1 = 1..5, z2 = 1.35, tll” = 1 and T = 3. (-) Separates the regions of 
outer localized states (0); (- -) se p arates the regions of inner localized st,ates (I!. 
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the transition from an inner localized state 
to a volume state for El = 0. In Fig. 7, we 
represent the corresponding out’er localized 
states. For the sit’uation represented in Fig. 
2c, the transition from an outer localized 
state to a volume state takes place for 
& = 0, and from an inner localized stat,e to 
a volume state for & = 0. In Fig. 8 we 
represent the corresponding inner states. 

8. Sinyle Component Metal on an, AB Support 

A figure similar to Fig. 2 can be con- 
structed for the volume states (Fig. 9). 
Before the metal and support are in contact, 
the energy spectrum for the volume states 
consists of one band for the metal and t,wo 
bands for the support. After contact,, the 
whole system may have two, one or no 
allowed energy bands for t,he volume states. 

Because in this case K1 = 1, ~1 = 0 and 
(YA’ = al, Eqs. (56), which give the bound- 
aries between various regions of localized 
states, become 

F “’ * 2 =F rH, - (r + l)P+, 
b” - ljH, - rP,, IZ/ + 21 

I 
= de, (W 

where 

’ = (a, - (YI’)/PI, 
;, = 

ZIU = (a1 - aIn)//%, 
q~zm~/Kz, P*s = &‘)“” 

+ My*‘) - 1 P2, (6% 
y*’ = [a, f 24” - h2, us = (a1 - n2)/02. 

FIG. 7. Kegions of outer localized states in the 
z’r”-plane corresponding to Fig. 2b (& = 0), z1 = 
2.0, 22 = 1.5, n1 = 0.5, 91 = 1.1, H, = 1.5, and 
VI ” = 1 with r = 1. 

FIG. 8. Regions of inner localized states in the 
z’z”-plane corresponding to Fig. 2c (tP = 0), z1 = 
1.5 , 7, = 0.8, VI = 0.3, zz = 1.7 and 7,” = 1. No 
inner local’zed stat,es occur in the shaded area. 

A representation in t,he Z1’zI”-plane of Eq. 
(68) is given in Fig. 10 for ql’* = 1 and for 
various values of the parameters. The re- 
gions arc labeled as in the previous sect,ions . 

9. Single Component Metal Supported on 
Single Component Metal 
If a linear chain composed of a finite 

number of atoms of a pure metal is sup- 
ported on a semi-infinite metal, K, = 1, 
Kf = 1, z1 = 0, z2 = 0 and Eq. (68) becomes 

zl, * 3 -+ (r - 1w2 - rp*2 [2111 * 31 
rH2 - (r + 1)Pk2 I - 

where 

Hz = qlzqzlr 

= ql’*! (70) 

P*2 = *(CT2 zt 27) + [i(U.L f 2?$ - l]“?, 
u2 = (a1 - az)/P2. (71) 

Before contact, the energy spectjrum for 
the volume states consists of one band for 
the metal and one band for the support. 
After contact, the whole system may have 
one or no allowed energy bands for the 
volume st’ates. 

10. Nature of Surface Bonds 
The values of the interaction parameters 

determine the nature of t)he bond between 
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I 

0 

I 

II III 

NO VOLUME 
STATES 

II m 

the adatom and the surface of the metal for 
:L localized state. For a localized state the 
clcctron is localized eit,her near to the adatom 
and/or near to the metal-support int,erface. 
Depending on the “localization” site the 
bond can be classified as homopolar, anionic 
or cat,ionic. The rat,io R bctwrn the prob- 
ability of localization of the electron on the 
adatom and the probability of its localiza- 
tion in all the ot,her positions in the system 
gives information about the nature of the 
bond. This ratio R is given by the equation 

Pro. 10. l{egions of localized st,ates in t,he .z~‘z~“- 
plane in the case of single component metal on an 
AB-t.ype support H, = 1.5. cs = 0.1, q = 1.5, 2% = 
0.5, T = 1 and TJ,‘* = 1. 

I II III 

FIG. Ya,b,c. k:nergy spectrum for volume states 
of single component metal on an AB support. 

Depending on t’he values of CA and all c,~, R 
can vary betwocn 0 and 1. There are two 
cxtremc cases 

‘V 
(a) ch = 0, 

c 
/c,12 # 0 so that, R = 

71 = 0 
0. The electron is not localized at, 
the adatom, and the adat,om is in 
the cationic state. 

(b) ch # 0, 2 jc,,/* = 0 gives R = 1, 
II =o 

and the electron is concentrated 
entirely on the adatom, and the 
adatom is in the anionic state. 

lcor the homopolar bond, which is the 
intermediate of the two extreme casts, 

/Ch12 = 2 Ic,212 and R = 41. In this CRSP, 
TL=O 

the elect,ron belongs with equal probability 
to both the adatom and the metal-support 
syst,em. Taking the homopolar state as a 
reference state, we shall consider that if 
R < >$, the adatom is in the cationic state, 
and if R > $5, the adatom is in the anionit 
state. 

The discussion which follows is bawd on 
the situation depicted in Fig. 2a. 

The adatom wave function coeficient ch 
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for the outer localized states can be written 
as 

CA = ql'Al/(z" f 2K1 cash ,$I). (73) 
For a 8 state the plus sign is valid and for 
an z state the minus sign. Then, for a 
homopolar outer 8 state, we have 

AND HUANG 

so that R = 0.95. In this case, an anionic 
6 outer state occurs (see Fig. 12). 

For a volume state, the electron may 
belong to any atom in the chain with prob- 
abilities depending on the nature of the 
atoms. This kind of bond is LLmetallic.” 

In Table 1 several results of our com- 

71’ = 

1+ 

c 

B1 /cash ~$1 + i A, sinh s,$11” + K12 
c 

HI lcosh ~$1 + i - sinh s[112 
Al 

(74) 

.Y ewzn 8 odd 

+ 7 A+; sin2(x - m)(i&) + KT2 
c 

+$ sin2(N - ~z)(i.$~) 
4 n1 

m wen modd 

From Eq. (74) and the eigenvalue Eq. (52), 
one can obtain values of Z’ and Z” for which 
homopolar outer 6 states occur (Fig. 11). 
There are two curves, both having Z’ = 2” 
and Z” = -2K1 as asymptotes. For in- 
stance, a homopolar 6 state is obtained for 
qfl = 1, z’ = 2.00, and 2” = -0.68 when 
[I = 0.1. The corresponding wave function 
coefficients (unnormalized) are CA = 2.519, 

N 

co = 1.00 and 
lx 

(Cl&j2 = 5.33. 
?L=l 

Obviously, the occurrence of a homopolar 
state is a special case; most values of the 
interaction paramet)ers lead to states hav- 
ing-to a greater or lesser extent-an ionic 
character. The regions of occurrence of 
anionic or cationic localized states are repre- 
sented in Fig. 12. OA&C@ means that there 
is an anionic 6 outer state and a cationic 6 
outer state, OAKS that] there is an anionic 
P outer state and a cationic % outer state, 
and so on. For instance, when z’ = -3, 
z ” = 0 and ql’ = 1, one obt,ains (1 = 1..53 
and X = 5.06. The corresponding wave 
function coeEicie& are CA = 0.18, co = 1.0. 
In t,his case, R < 0.04, and a cationic 6 
outer state occurs. However, for z’ = 0, 
x N - - -3, and 7~1’ = 1, one obtains & = 1.50 
and X = 4.83, and the corresponding wave 
function coefficients are CA = 8.77, co = 1.0, 

putations are presented. They show the 
effect of the number of metal at’oms and 
the parameters Z’ and Z” on the nature of the 
bond. The values of the parameters not 

FIG. 11. Curve of homopolar 6 out,er statw in the 
z’z”-plane z1 = 1.5, H,, = 1.5, Q = 0.1, q = 1.1, 
r = 1, and ql” = 1. (-) Supported metal catalyst; 
(- -) pure semi-infinit,e metal). 
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0A~C.h” 

I A?%J’ 

HOMOPOLAR 

FIG. 12. ltegions where homopolar, anionic, or cationic localized stat,es may occur H, = 1.5, z1 = 
I .5, w = 0.1, r = 1,~ = 1.1 and 11” = 1. (-) Separates the regions of out,er localized states; (- -) 
separates the regions of inner localized states. 

lnentioned in Table 1 are the same as in in one of t,h(l layers and nonperiodic in the 
Fig. 12. other. This kind of wave function will 

11. Composite States 
be called a composite wave function and 
the corresponding states composite states. 

For the bilayers new t’ype of stat,es can Specific to these st,at,rs is t)he fact, hhat, eit,hrr 
occw in which the wave function is periodic tI1 or 82 is imaginary. Tht> wave function can 

TABLE: 1 
NATUIW OF Lot ILIZKD B~NIE IN CHEMISORPTION OR‘ SUPPO~WI.:D METALS 

No. of 
metal atoms 2’ z” El x CA co R Type of bond 

2 
2 

m 
2 

03 
2 

cc 
4 

12 
2 

cc 
4 
2 

P 
2 

- 3 00 
2.00 
2.00 
0.00 
0.00 

- 3 00 
- 3 00 
- 3.00 
-3.00 
-2.00 
-2.00 
-2.00 

1.55 
1.55 
0 .5 

-3.20 
-0.68 
-0.68 
- 3 00 
- 3 00 

0.00 
0.00 
0.00 
0 00 
0.00 
0.00 
0 00 
3 00 
3.00 
0 5 

1.66 
0 1 
0.83 
1.50 
1 .I0 
1.53 
1.185 
1.52 
1.52 
1 .23 
0.86 
1.26 
0.2 
1 19 

5.64 
2.508 

-1.365 
4.83 
1.66 
5.06 
1 ,785 
5 .03 
5.03 
:3.9x 
1 ,393 
4.09 

-2.53 
-1.80 

2.00 

1.01 
2.519 

- 0.293 
8.77 
3.125 
0.18 
0.278 
0.29 
0.29 
0.40 
0 :wi 
0 .3x 

-0.96 
-1.67 

1 00 
1 00 
1 00 
1.00 
1.00 
1 00 
1 00 
1 00 
1 00 
1 00 
1.00 
1 .oo 
1 00 
1 00 

0.5 Homopolar 6 
0.5 Homopolar 6 
0.06 Cationic X 
0.95 Anionic 6 
0.89 Anionic 6 
0.04 Cationic P 
0.066 Cat,ionic 6 
0.0x Catiollic 6 
0.0x Cationic 6 
0.12 Cationic (P 
0.1 Catiooic 6 
0.11 Cationic P 
0.45 Cat,ionic X 
0.6X Anionic X 

Metallic. 
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be nonperiodic in the metal and periodic in 
the support, and then a localized state at 
the metal surface and adatom can occur. 
The wave function can be periodic in the 
metal layer and exponentially decaying in 
the support, and in this case the clcctron 
belongs to t,he whole metal layer. 

CONCLUSION 

The support, affects the chcmisorption 
process: (a) by modifying the energies of 
nonlocalized volume states and t,hosc of the 
localized states and (b) by generating com- 
posit’e st!atcs, which have a periodic wave 
function in one of the layers and a IXX~- 

periodic wave function in the ot,her. 
The influence on t<he volume states is 

shown in Figs. 2 and 9, from which the 
following observations can be made. A 
single component finite chain of metal with- 
out) support, has a single band; with an 
AB-t)ype support the complete system can 
have two bands. An A’B’ finite chain of 
metal without’ support has two bands; with 
support there are conditions in which the 
whole system has only one band. Two 
semiconductor layers (each of them reprc- 
sented independently by t,wo bands) can 
have a single band for the volume states 
(as the metals). Metal-semiconductor layers, 
which independently can be represented by 
one-two bands, may toget)hrr have no 
volume states. 

The influence of the support on the local- 
ized states is shown in Table 1. Depending 
on the number of atoms of the metal and 
the nature of the support, the localized bond 
can change from anionic to cationic. 

For the range of parameters used in t,his 
paper, the number of metal atoms has an 
effect on chemisorption if it is less than 5 t,o 
10. 

States specific to bilayers occur. They 
have periodic wave functions in one of the 
layers and nonperiodic wave functions in 
the other. If the wave function coefficients 
are larger in the layer having a periodic 
wave function, the electron will belong to 
that whole layer. 
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APPENDIX A 

Xolutiom 0s Eqs. (9) and (IO) 

Inserting Eq. (Isa) in Eq. (lOa), and 
Eq. (16b) in Eq. (lob) yields 

(E - a*)xm = /32(y”-l + y”+‘); m even, 
(AlI 

(E - a&p = ,&(x-l + xm+‘); m odd. 
W 

i. For m Even 

Eliminating y between Eqs. (Al) and 
(A2) one obtains 

(E - w)(E - c&)xm 
= ,,yxm+z + 2x” + x+-2), 

i.e., (E - LYA)(E - aB)x2 
= /32”(x” + 2x2 + 1) = pz”(Z” + 1)2, 

or &[(E - O(A) (E - (Y~)]~/~x. = P2(z2 + l), 

xvhich can be written as 

x2 - Ax + 1 = 0, (A3) 

where 

A = zk[(E - w)(E - ~m)]“~,‘/32. (Ai) 

The solution of Eq. (As) is 

x = A/2 f [(A/2)2 - l]l”. (As) 

Dcnot,ing 
A = 2 cos 82, CAB) 

IC can be written as 

x = cos O2 f i sin t& = exp(f i&J. (A7) 

Thus, the gcncral solution of (Al) may 
bc expressed as 

xm = Gn = Cei” 0 2 + De-imo2 
= Aa cos mt& + Ba sin m& (AS) 

in which 

A, = C + D, Ba = i(C - D). (A9) 

Because cN = 0, Eq. (A8) leads to 

B 3 = _ A3coSNe2 
’ sin N& 

Therefore 

= A3 cos m& - 
A 2 cos Nez . 

Cm sin Ne sin me2 
2 

= -&$- sin (N - m)& 
2 

= A2 sin (N - m)e,. WO) 
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ii. For m Odd c, = A1 cos ~61 + B1 sin stir, s even, 

Introducing xnL from (AlO) in Eq. (A2), c8 = Kl(.41 cos ~01 + B1 sin SOI), s odd, 
one obtains (Alsj 

(E - aB)y” = @?(A2 sin(lY - m + l)& 
+ ~2 sin(N - m - 1)&j. (All) 

Because [Eq. (Ifib)] u’” = cm, Eq. (All) 
becomes 

y” = c, = KzAz sin(AT - m)&, (A12) 

where 

Kz = 2fiz cos &/(E - aH). (A13) 

From Eqs. (A4) and (A6), one obtains 

4~2 co9 82 = (E - aA)@’ - an). (A14) 

Defining a dimensionless energy bJ 

S? = (E - 52)/p*, & = (a.4 + 4/a, 
(A15) 

Eq. (Al4) can be written as 

x2.2 - 222 = 4 cos2 e L 29 6416) 

where 

KI = 2/31 cos e,,‘(E - o(w) 
= 2 cos e,/(X, + Zl) 
= [(E - a.s,,)/(E - c~B,)]l’~. (A19) 

The forms of (Al@ arise by introducing t,he 
parameter 01 via 

Xl2 - 212 = 4 cos” 0 L 17 b420) 

where 

x1 = (E - &)/Pl, 
21 = (a*, - aBr)/%31, 

??I = (tyA’ + Olsr)/2. (A21) 

X1 and z1 are the dimensionless energy and 
composition parameter of t,hc metal, rc- 
spectivcly. 

APPENDIX B 

Derivation.s of Eqs. (46’) and (56) 
Inserting Eq. (42) in Eq. (3.5) yields 

.f(e2) = sin W - r)b2 + i .$2) 

sin(N-r-l)(~2+i&) 
sin(N - rjp2 cosh(N - r)& + i COS(~V - r)pCcn sinh(N - r)& 

= Sin(-v - r - 1)pg cosh(N - r - l)&? + i cos(N - r - 1)~~ sinh(N - r - l)& 
(Bl) 

where 
z2 = (a* - ae)/2Pn 

For large value of S, Eq. (Bl) can be ap- 
(A17) proximated by 

s= 

zz 

= 

lim SC021 
N4m 

e(+-7)~Z[sin(N - r)fi, + i cos(N - r)pq] 
f++--l)t?[sin(N - r - 1)~~ + i cos(N - r - 1)p.J 

eb[sin(N - r)ML, + i cos(N - r)p2](-i) 
[sin(N - r - l>clz + i cos(N - r - l)pJ(-ij 
&- it\‘--r)p* /e--i(x--‘-l)p~ 
e(E2-ir2) 032) 

is the composition parameter of the sub- Since e2 = p* + i &, Eq. (B2) can be aritt,cn 
&rate. 

Similarly, the solutions of Eqs. (9) for a’ 
the metal, by inserting Eq. (16a) in Eq. j = eeie2 = cos 02 - i sin t12. (B3) 

(9a>, and Eq. (16b) in Eq. (9b), are From Eqs. (27) and (B3), one obtains 
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f = $([u f q(z12 + 4 cos2 ep]* - 222)“2 + ($([u f &I2 + 4 cos2 e,y12 - 222) - 1)1’2. 
(B4) 

For & = i&, T + i&, Eq. (B4) becomes 

9 = 3( [u A- rl(z12 + 4 cosh2 .$1)1’2]2 - ~2~)“~ + (;{ [u f v&12 + 4 cash’ &)1’21 - zt2) - l)l”. 
uw 

For O1 = (7r/2) + $1, (3s/2) + i&, Eq. (B4) 
becomes 

gl = +{ [u f r](z~~ - 4 sinh2 [1)1’2]2 - z22}1’2 + (a{ [u f ~(21~ - 4 sinh2 ,$I)~‘~]~ - 22”) - 1)lj2. 
036) 
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